
MICROCONTROLLER & EMBEDDED SYSTEMS
UNIT-2

2.1 8051 INSTRUCTION SET

Mnemonic Description Byte
ARITHMETIC OPERATIONS

ADD A,Rn Add register to Accumulator 1

ADD A,direct Add direct byte to Accumulator 2

ADD A,@Ri Add indirect RAM to Accumulator 1

ADD A,#data Add immediate data to Accumulator 2

ADDC A,Rn Add register to Accumulator with Carry 1

ADDC A,direct Add direct byte to Accumulator with Carry 2

ADDC A,@Ri Add indirect RAM to Accumulator with Carry 1

ADDC A,#data Add immediate data to Accumulator with Carry 2

SUBB A,Rn Subtract Register from Acc with Borrow 1

SUBB A,direct Subtract direct byte from Acc with Borrow 2

SUBB A,@Ri Subtract indirect RAM from Acc with Borrow 1

SUBB A,#data Subtract immediate data from Acc with Borrow 2

INC A Increment Accumulator 1

INC Rn Increment Register 1

INC direct Increment direct byte 2

INC @Ri Increment indirect RAM 1

DEC A Decrement Accumulator 1

DEC Rn Decrement Register 1

DEC direct Decrement direct byte 2

DEC @Ri Decrement indirect RAM 1

INC DPTR Increment Data Pointer 1

MUL AB Multiply A and B 1

DIV AB Divide A by B 1

DA A Decimal Adjust Accumulator 1

Mnemonic Description Byte
LOGICAL OPERATIONS

ANL A,Rn AND Register to Accumulator 1

ANL A,direct AND direct byte to Accumulator 2

ANL A,@Ri AND indirect RAM to Accumulator 1

ANL A,#data AND immediate data to Accumulator 2

ANL direct,A AND Accumulator to direct byte 2

ANL direct,#data AND immediate data to direct byte 3

ORL A,Rn OR Register to Accumulator 1

ORL A,direct OR direct byte to Accumulator 2

ORL A,@Ri OR indirect RAM to Accumulator 1

ORL A,#data OR immediate data to Accumulator 2

ORL direct,A OR Accumulator to direct byte 2

ORL direct,#data OR immediate data to direct byte 3

XRL A,Rn Exclusive-OR Register to Accumulator 1

XRL A,direct Exclusive-OR direct byte to Accumulator 2

XRL A,@Ri Exclusive-OR indirect RAM to Accumulator 1

XRL A,#data Exclusive-OR immediate data to Acc 2

XRL direct,A Exclusive-OR Accumulator to direct byte 2

XRL direct,#data Exclusive-OR immediate data to direct byte 3

CLR A Clear Accumulator 1

CPL A Complement Accumulator 1

RL A Rotate Accumulator Left 1

RLC A Rotate Accumulator Left through Carry 1

RR A Rotate Accumulator Right 1

RRC A Rotate Accumulator Right through the Carry 1

SWAP A Swap nibbles within the Accumulator 1

Mnemonic Description Byte
DATA TRANSFER

MOV A,Rn Move Register to Accumulator 1

MOV A,direct Move direct byte to Accumulator 2

MOV A,@Ri Move indirect RAM to Accumulator 1

MOV A,#data Move immediate data to Accumulator 2

MOV Rn,A Move Accumulator to register 1

MOV Rn,direct Move direct byte to register 2

MOV Rn,#data Move immediate data to register 2

MOV direct,A Move Accumulator to direct byte 2

MOV direct,Rn Move register to direct byte 2

MOV direct,direct Move direct byte to direct 3

MOV direct,@Ri Move indirect RAM to direct byte 2

MOV direct,#data Move immediate data to direct byte 3

MOV @Ri,A Move Accumulator to indirect RAM 1

MOV @Ri,direct Move direct byte to indirect RAM 2

MOV @Ri,#data Move immediate data to indirect RAM 2

MOV DPTR,#data16 Load Data Pointer with a 16-bit constant 3

MOVC A,@A+DPTR Move Code byte relative to DPTR to Acc 1

MOVC A,@A+PC Move Code byte relative to PC to Acc 1

MOVX A,@Ri Move external RAM(8-bit address) to Acc 1

MOVX A,@DPTR Move external RAM(16-bit address) to Acc 1

MOVX @Ri,A Move Acc to external RAM(8-bit address) 1

MOVX @DPTR,A Move Acc to external RAM(16-bit address) 1

PUSH direct Push direct byte onto stack 2

POP direct Pop direct byte from stack 2

XCH A,Rn Exchange Register with Accumulator 1

XCH A,direct Exchange direct byte with Accumulator 2

XCH A,@Ri Exchange indirect RAM with Accumulator 1

XCHD A,@Ri Exchange low order Digit indirect RAM
with Accumulator 1

Mnemonic Description Byte
BOOLEAN VARIABLE MANIPULATION

CLR C Clear Carry 1

CLR bit Clear direct bit 2

SETB C Set Carry 1

SETB bit Set direct bit 2

CPL C Complement Carry 1

CPL bit Complement direct bit 2

ANL C,bit AND direct bit to CARRY 2

ANL C,/bit AND complement of direct bit to Carry 2

ORL C,bit OR direct bit to Carry 2

ORL C,/bit OR complement of direct bit to Carry 2

MOV C,bit Move direct bit to Carry 2

MOV bit,C Move Carry to direct bit 2

JC rel Jump if Carry is set 2

JNC rel Jump if Carry not set 2

JB bit,rel Jump if direct Bit is set 3

JNB bit,rel Jump if direct Bit is Not set 3

JBC bit,rel Jump if direct Bit is set & clear bit 3

Mnemonic Description Byte
PROGRAM BRANCHING

ACALL addr11 Absolute Subroutine Call 2

LCALL addr16 Long Subroutine Call 3

RET Return from Subroutine 1

RETI Return from interrupt 1

AJMP addr11 Absolute Jump 2

LJMP addr16 Long Jump 3

SJMP rel Short Jump (relative addr) 2

JMP @A+DPTR Jump indirect relative to the DPTR 1

JZ rel Jump if Accumulator is Zero 2

JNZ rel Jump if Accumulator is Not Zero 2

CJNE A,direct,rel Compare direct byte to Acc and Jump if
Not Equal 3

CJNE A,#data,rel Compare immediate to Acc and Jump if
Not Equal 3

CJNE Rn,#data,rel Compare immediate to register and Jump if
Not Equal 3

CJNE @Ri,#data,rel Compare immediate to indirect and Jump if
Not Equal 3

DJNZ Rn,rel Decrement register and Jump if Not Zero 2

DJNZ direct,rel Decrement direct byte and Jump if Not
Zero 3

NOP No Operation 1

2.2 8051 ADDRESSING MODES
What is an addressing mode ?
Addressing mode is a way to address an operand.
Operand means the data we are operating upon (in most cases source data). It can be
a direct address of memory, it can be register names, it can be any numerical data etc.
For example,
 MOV A,#2AH
Here, Operand= 2A
On execution of this instruction, the data 2AH is moved to accumulator A.
There are five different ways of executing this instruction. Thus, we can say that there
are 5 addressing modes of 8051.
Types of Addressing Modes in 8051
1. Immediate addressing mode
2. Direct addressing mode
3. Register direct addressing mode
4. Register indirect addressing mode
5. Indexed addressing mode.

1. Immediate addressing mode
• In this Immediate Addressing Mode, the data is provided in the instruction itself.
• The data is provided immediately after the opcode.

 Example: MOV A,#6AH
- The opcode for MOV A, # data is 74H.
- The opcode is saved in program memory at 0202 address.
- The data 6AH is saved in program memory 0203 (Any part of the program

memory can be used, this is just an example).
- When the opcode 74H is read, the next step taken would be to transfer whatever

data at the next program memory address (here at 0203) to accumulator A (E0H
is the address of accumulator).

- This instruction is of two bytes and is executed in one cycle.
- So after the execution of this instruction, program counter will add 2 and move

to 0204 of program memory.

2. Direct Addressing Mode
 Here the address of the data (source data) is given as operand.
 Example: MOV A,04H

- 04H is the address of register 4 of register bank#0.
- When this instruction is executed, whatever data is stored in register 04H is

moved to accumulator.
- In the figure below, register 04H holds the data 1FH. So the data 1FH is moved

to accumulator.
- This is a 2 byte instruction which requires 1 cycle to complete.
- Program counter will increment by 2 and stand in 0204.
- The opcode for instruction MOV A, address is E5H.
- When the instruction at 0202 is executed (E5H), accumulator is made active and

ready to receive data.
- Then program control goes to next address that is 0203 and look up the address

of the location (04H) where the source data (to be transferred to accumulator) is
located.

- At 04H the control finds the data 1F and transfers it to accumulator and hence
the execution is completed.

3. Register Direct Addressing Mode
 In this addressing mode we use the register name directly as source operand.
 Example: MOV A,R4

- There are 32 word registers- 8 in each of the four Register Banks named 0,1,2
and 3.

- Each bank has 8 registers named from R0 to R7.
- At a time only one register bank can be selected.
- Selection of register bank is made possible through a Special Function Register

(SFR) named Processor Status Word (PSW).
- PSW is an 8 bit SFR where each bit can be programmed.
- Bits are designated from PSW.0 to PSW.7
- Register banks are selected using PSW.3 and PSW.4 These two bits are known

as register bank select bits as they are used to select register banks.

• In register direct addressing mode, data is transferred to accumulator from the
register (based on which register bank is selected).

• Opcode for MOV A, R4 is EC.
• The opcode is stored in program memory address 0202 and when it is executed the

control goes directly to R4 of the respected register bank (that is selected in PSW).
• If register bank #0 is selected then the data from R4 of register bank #0 will be

moved to accumulator (here it is 2F stored at 04 H).
• 04 H is the address of R4 of register bank #0.
• Movement of data (2F) in this case is shown as bold line.
• The dotted line shows that 2F is getting transferred to accumulator from data

memory location 0C H.
• Here, 0C H is the address location of Register 4 (R4) of register bank #1.
• The instruction above is 1 byte and requires 1 cycle for complete execution.
• This means using register direct addressing mode can save program memory.

4. Register Indirect Addressing Mode
 In this addressing mode, address of the data (source data to transfer) is given in
 the register operand.
 Example: MOV A, @R0

- Here the value inside R0 is considered as an address, which holds the data to be
transferred to accumulator.

- If R0 holds the value 20H, and we have a data 2F H stored at the address 20H,
then the value 2FH will get transferred to accumulator after executing this
instruction.

- The opcode for MOV A,@R0 is E6H.
- Assuming that register bank #0 is selected. So the R0 of register bank #0 holds

the data 20H.
- Program control moves to 20H where it locates the data 2FH and it transfers

2FH to accumulator.
- This is a single byte instruction and the program counter increments 1 and

moves to 0203 of program memory.
- Note: Only R0 and R1 are allowed to form a register indirect addressing

instruction.

5. Indexed Addressing Mode
 In the indexed addressing mode, the source memory can only be accessed from
 program memory only.
 The destination operand is always the register A.
 Example: MOVC A, @A+DPTR

- The source operand is @A+DPTR and we will get the source data (to transfer)
from this location.

- Here we are adding contents of DPTR with present content of accumulator.
- This addition will result a new data which is taken as the address of source data

(to transfer).
- The data at this address is then transferred to accumulator.
- The opcode for the instruction is 93H.

- DPTR holds the value 01FE, where 01 is located in DPH (higher 8 bits) and FE
is located in DPL (lower 8 bits).

- Accumulator now has the value 02H.
- A 16 bit addition is performed and now 01FE H+02 H results in 0200 H.
- Whatever data is in 0200 H will get transferred to accumulator.
- The previous value inside accumulator (02H) will get replaced with new data

from 0200H.
- New data in the accumulator is shown in dotted line box.
- This is a 1 byte instruction with 2 cycles needed for execution.
- The execution time required for this instruction is high compared to previous

instructions
Another Example: MOVC A, @A+PC
It works the same way as above example. The only difference is, instead of adding
DPTR with accumulator, here data inside program counter (PC) is added with
accumulator to obtain the target address.

6. Implied Addressing Mode
• In the implied addressing mode, there will be a single operand.
• These types of instruction can work on specific registers only.
• These types of instructions are also known as register specific instruction.
Examples: RL A
 SWAP A
• These are 1- byte instruction.
• The first one is used to rotate the A register content to the Left.
• The second one is used to swap the nibbles in A.

Prepared by
Shweta Sharma

